Joint universality for Lerch zeta-functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint Value-distribution Theorems on Lerch Zeta-functions. Ii

We give corrected statements of some theorems from [5] and [6] on joint value distribution of Lerch zeta-functions (limit theorems, universality, functional independence). We also present a new direct proof of a joint limit theorem in the space of analytic functions and an extension of a joint universality theorem.

متن کامل

Joint universality of periodic zeta-functions: continuous and discrete cases

In this paper, we give a survey on universality theorems of the collection of various zeta-functions, when one of them has an Euler product and other has no. We present some results on both, continuous and discrete, cases.

متن کامل

Functional relations and universality for several types of multiple zeta functions

Firstly, we prove a functional relation for the Tornheim double zeta function. Using this functional relation, we obtain simple proofs of some known formulas for special values of Tornheim and Euler-Zagier double zeta functions. Secondly, we obtain functional relations for Witten zeta functions by using a double L-values relation. By these functional relations, we obtain new proofs of known res...

متن کامل

The Joint Universality of Zeta-functions Attached to Certain Cusp Forms

The notion of the universality appears in various fields of mathematics. A general definition of the universality is given in [6]. Let X and Y be topological spaces and Tj : X → Y , j ∈ I, be continuous mappings. Then an element x ∈ X is called universal with respect to the family {Tj , j ∈ I} if the set {Tjx : j ∈ I} is dense in Y . Many universal objects of various nature are known, see an ex...

متن کامل

The Lerch zeta function IV. Hecke operators

This paper studies algebraic and analytic structures associated with the Lerch zeta function. It defines a family of two-variable Hecke operators {Tm : m ≥ 1} given by Tm(f )(a, c) = 1 m ∑m−1 k=0 f ( a+k m ,mc) acting on certain spaces of real-analytic functions, including Lerch zeta functions for various parameter values. The actions of various related operators on these function spaces are de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 2017

ISSN: 0025-5645

DOI: 10.2969/jmsj/06910153